If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2+15y-22=0
a = 2; b = 15; c = -22;
Δ = b2-4ac
Δ = 152-4·2·(-22)
Δ = 401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{401}}{2*2}=\frac{-15-\sqrt{401}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{401}}{2*2}=\frac{-15+\sqrt{401}}{4} $
| 3x-2=3(2x-1)-2(2x+1) | | 75x=6 | | 3x–2=3(2x–1)–2(2x+1) | | (7−2x)/9=−3 | | 7a+12=3a+16 | | 13y-5=9y=27 | | 8-9j=-37 | | ½+4=x1 | | ½4=x1 | | +(x+7)=-4 | | -(x+7)=-4 | | 80t=584 | | 7+18x+20x-5=180 | | +(x-16)=0 | | -(x-16)=0 | | 10q=97 | | 3x-5(x-4)-(2x+4)=2(3x-2) | | +(3-x)=15 | | -(3-x)=15 | | 6=-(6x6) | | 3x–5(x–4)–(2x+4)=2(3x–2) | | 3x+2=6+2 | | -(x+3)=15 | | 2x-2x=6-2 | | 2y+7y+18=90 | | (3y+30)=(7y-10) | | 3(x+1)-2-4x=2 | | (11x-29)=(3x+27) | | 3x-2(0.5x-1)=0 | | (9x-2)=2x-2 | | 3+7x5=38 | | 8g=464 |